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Background Methodology Results

Discovering Amorphous Materials with Desired Properties

Trial-and-error

Screen through the design space until samples with desired properties are found.
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• Techniques like high-throughput screening, computer simulation, machine
learning-based property prediction can be used to speed up the process

• Inevitably, a large number of material samples need to be created/generated,
leading to high manpower, material, and time costs
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Discovering Amorphous Materials with Desired Properties

Inverse Design

Begin with desired properties and determine the atomic configurations to achieve them.

E=100
Generate

• Far fewer material samples need to be screened, saving costs

• Has the potential to significantly speed up the discovery of novel amorphous
materials

How do we achieve inverse design of amorphous materials?
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Generative Modeling with Diffusion Models

A family of machine learning frameworks that generate data from random noise by
denoising the data step-by-step.

Figure 1: Image generation process of diffusion models1

• Huge success and widely adopted in image and video generation

• Inspired lots of efforts in inverse design of crystalline materials and molecules2,
but its adaptation in amorphous materials are understudied

1
Ho, Jonathan and Jain, Ajay and Abbeel, Pieter. "Denoising Diffusion Probabilistic Models." NeurIPS (2020).

2
Zeni, Claudio, et al. "A generative model for inorganic materials design." Nature (2025).
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Generative Modeling of Amorphous Materials

Start from an initial state of the sample, adjust its atomic positions and elements
step-by-step towards the final state.

• Similar to a simulation pipeline but the atoms are not driven by energy and force

• Instead, a neural network predicts the movements of atoms at each step
conditioned on the desired properties

Initial State Middle State Middle State Final State

Neural
Network

Properties

-step Markov process
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Neural Network for Generative Modeling

• Input: Current state of an amorphous material sample at each step, and the desired
properties

• Output: State of the sample at the next step

Sample at
current state

E=100
Li=15%

Desired
Properties

➕ Neural
Network

Sample at
next state

?
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Representation of Amorphous Material Samples

Representing one amorphous material sample as a
tuple x = (C,X ,E).

• C ∈R3×3 are the lattice vectors

• X ∈RN×3 are the atomic positions

• E ∈RN×d are the element one-hot embeddings

And its properties as a vector y where each value is a
scalar property.

i-th
atom
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Equivariant Neural Network Architecture

Update the positions and elements of atoms while preserving the geometric
equivariance of amorphous material samples.

Sample Graph

Element Embeddings
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• A graph structure of each sample where node and edge features are invariant to
permutation and translation

• EGNN3 backbone whose update to each sample is invariant

3
Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. "E (n) equivariant graph neural networks." ICLR (2021).
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Reversible Generation Process

We cannot train a neural network with the generation process alone.
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A reversed generation process providing ground truth for training.
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Denoising Generation Process

• The reversed generation process gradually adds Gaussian noise to the sample until
pure noise at the initial state

• The neural network learns to remove the noise added in each step

• The generation process can start from an initial state of pure Gaussian noise

Noisy Sample Less Noisy Sample

Add noise

Noise
Schedule

Neural
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Density Control in the Generation Process

Importance of density control

• Density in amorphous materials is a key parameter that affects numerous
properties

• Being able to control the density during generation is essential for generating
materials with certain property targets

Limitation of diffusion models

• Diffusion models manipulate data by adding/removing noise from data —
changing the position and element of each atom

• Adding or removing atoms from the system will be technically challenging for
diffusion models
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Density Control via Ghost Atoms

Framing the density control problem as changing elements of atoms.

• Ghost atoms are added to each material sample so that the density (number of
atoms per unit volume) of all samples reaches one target maximum value

• Ghost atoms are treated as normal atoms by the model but assigned a special
element class and removed in the final generated samples

• The model can control the density during generation by increasing/decreasing the
proportion of atoms with the special element type

Neural
Network

Properties
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Generation of Amorphous Silica

With desired shear modulus and average ring size that are dependent on the samples’
structures and densities.
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(a) Accuracy of shear modulus of generated
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(b) Accuracy of average ring size of generated
samples
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Generation of Multi-element Glass

With desired Young’s modulus and Lithium ratio that are largely dependent on
samples’ compositions.
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Generation of Multi-element Glass

• The flattening at both ends is primarily
the result of extrapolation

• The Young’s modulus of generated
samples tend to be smaller than targets

• Requenched samples that are
simulated with the compositions of
generated samples align better with
targets

• The model is able to generate
compositionally accurate samples
but falls short in generating
structures accurately
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Generation of Amorphous Silicon

Trained with a-Si simulated with different thermal histories and perform generation.
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(b) Potential energy distribution of training vs.
generated samples

This further demonstrates that the model is unable to generate low-energy structures
derived from relaxation processes.
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Limitations

Generation of samples with relaxed structures

Unable to generate amorphous materials with relaxed structures accurately, an
inherent limitation of diffusion models.

Real-world synthesis of generated samples

New synthesis techniques are needed to fully take advantage of the generated atomic
configurations.

Further discussion and solutions: stay tuned for the next presentation!
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Thank you!

lyan@cs.aau.dk

www.yanlincs.com
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